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SOLUTION TO PROBLEM SET 13
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1 Purcell 10.13

Consider a parallel plate capacitor. The energy required to charge it to a potential difference
V is E = CV 2/2. The capacitance increases with a dielectric to C = εCo = εA/4πs. The potential
difference is Es. Then

E =
1
2
CV 2 =

εAE2s2

8πs
=

ε

8π
E2(As) ,

and the energy density is

ε
E2

8π
.

For a wave in a dielectric B =
√
εE and the energy density in the magnetic field is

B2

8π
= ε

E2

8π
.

2 Purcell 10.16

We use Gauss’s law inside the uniform spherical charge distribution.

4πr2Er = 4πQenc = 4π
4π
3
r3ρ

E =
4π
3
ρr

Let the sphere of density ρ be centered at the origin, and the sphere of density −ρ be centered at
the location s. The total field is

E =
4π
3
ρr+

4π
3
(−ρ)(r − s) =

4π
3
ρs .

In the middle of a long cylinder, we can find the field from Gauss’s law.

2πrLEr = 4π(πr2Lρ)

E = 2πρrr̂

We are using cylindrical coordinates here so r̂ points away from the axis. The total field of two
cylinders with their axes displaced by s is

E = 2πρrr̂+ 2π(−ρ)(rr̂ − s) = 2πρs .
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3 Purcell 11.2

The magnetic field of a current loop with its axis on the z axis has only a z component with

Bz =
2πb2I

c(b2 + z2)3/2
=

2m
(b2 + z2)3/2

.

The dipole field on this axis is all radial, which here is the z direction.

B′
z = Br =

2m
r3

=
2m
z3

So

Bz =
z3

(b2 + z2)3/2
B′

z

and the loop field approaches the dipole field when z � b. There is a 1% difference when

z3

(b2 + z2)3/2
= 0.99 ,

z = 12.2 b .

4 Purcell 11.4

The earth’s radius is about 6× 108 cm so

0.62 gauss =
2m

(6× 108 cm)3
,

m = 6.7× 1025 erg/gauss = 6.7× 1022 J/T .

If we have a current loop of radius 3× 108 cm, we need a current I where

0.62 gauss =
2π(3× 108 cm)2I

c[(3× 108 cm)2 + (6× 106 cm)2]3/2
,

I = 9.9× 1018 esu/s = 3.3× 109 A .

5 Purcell 11.7

We will use polar coordinates for the integration. We divide the surface into little strips sub-
tended by the small change in polar angle dθ. The surface area of one of these strips is

da = 2π(R sin θ)(Rdθ) .
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The amount of charge on this strip is

dq = σda =
Q

4πR2
2πR2 sin θ dθ =

1
2
Q sin θ dθ .

This charge revolves around with a frequency f = ω/2π, so it represents a little current

dI = f dq =
ωQ

4π
sin θ dθ .

Each strip contributes a moment dm = AdI/c.

m =
1
c

∫
AdI =

2
c

∫ π/2

0
π(R sin θ)2

ωQ

4π
sin θ dθ =

ωQR2

2c

∫ π/2

0
sin3 θ dθ =

ωQR2

3c

6 Purcell 11.9

From Chapter 6, the field from a finite solenoid is

Bz =
2πIn
c
(cos θ1 − cos θ2) .

For a semi-infinite solenoid, θ2 = π and with z measuring the distance of the point outside the top
of the solenoid,

Bz =
2πIn
c

(
1− z√

z2 + r2
o

)
.

We want to maximize Bz(dBz/dz).

dBz

dz
= −2πIn

c

(
1√

z2 + r2
o

− z2

(z2 + r2
o)3/2

)
= −2πIn

c

(
r2
o

(z2 + r2
o)3/2

)

Bz
dBz

dz
∝ 1
(z2 + r2

o)3/2

(
1− z√

z2 + r2
o

)

Taking a derivative and setting to zero yields the equation

3z2 − r2
o = 3z

√
z2 + r2

o .

Squaring and solving the quadratic equation gives z2 = r2
o/15. Only the negative root solves the

original equation so

z = −ro

√
1
15

.

This is slightly inside the solenoid.

3



7 Purcell 11.12

The potential of a single dipole in a magnetic field can be chosen to be

U = −m · B .

This does not have the zero where we want our zero to be. However, for the purposes of finding
work done in rotating the dipoles we may use

W = Uf − Ui .

In the initial configuration, the field due to dipole 2 at m1 is as shown above with

B2 =
m2

r3
.

The work required to rotate m1 is

W1 = Uf − Ui = −m1B2 cos(90 + θ1)− 0 = m1B2 sin θ1 =
m1m2

r3
sin θ1 .

To rotate m2, we break up the field from m1 into two parts with

B1 =
2m1 cos θ1

r3
B′

1 =
m1 sin θ1

r3
.

The work to rotate m2 is then

W2 = Uf − Ui = [−m2B1 cos θ2 −m2B
′
1 cos(90 + θ2)]− [−m2B

′
1 cosπ]

= −m2B1 cos θ2 +m2B
′
1 sin θ2 −m2B

′
1

= −2m1m2

r3
cos θ1 cos θ2 +

m1m2

r3
sin θ1 sin θ2 − m1m2

r3
sin θ1 .

the total work is

W =W1 +W2 =
m1m2

r3
(sin θ1 sin θ2 − 2 cos θ1 cos θ2) .
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8 Purcell 11.16

The exterior field of a uniformly magnetized sphere turns out to be that of a magnetic dipole
with dipole moment

m =
4π
3
r3M .

This is something that needs to be proved, however. One can prove this by finding the field from
the bound current. The bound current density is

Jb = c∇× M = 0 ,

and the bound surface current is

Kb = cM × n̂ =M sin θ φ̂ .

This is identical to the surface current of a rotating sphere with uniform surface charge. One can
integrate to find the vector potential which is that of a magnetic dipole at the center. We leave
this to you as an exercise.

The field at the pole is

B =
2m
r3

=
8π
3
(750 erg/gauss cm3) = 6280 gauss .

At the equator

B =
m

r3
= 3140 gauss .

To find the force, we need to know the force on a uniformly magnetized sphere in the field of a
dipole. Fortunately, this is simple due to the following argument. The force on the sphere on the
right must be the same if we replace the sphere on the left with a dipole at its center. This force
must be equal and opposite to the force on the imaginary dipole. But the field from the sphere
on the right at the dipole is that of a dipole, so the force between spheres is the same as the force
between two dipoles. (This is not obvious without the argument just given.)

F = m2

∣∣∣∣db1z

dz

∣∣∣∣ = m2

∣∣∣∣ ddz
(
2m1

z3

)∣∣∣∣ = 6m1m2

z4
=
3
8
m1m2

r4

F =
3
8

(
4π
3
M

)2

r2 = 3.7× 106 dynes = 37 N
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